Physics 433 - Lecture 7

- **Least square fit to a straight line**
 - Data consisting of \((x_i, y_i)\) pairs with \(x\) the independent and \(y\) the dependent variable related by \(y = A + Bx\)
 - **Method of least squares** that minimizes the differences
 \[
 \chi^2 = \frac{\left[y_i - y(x_i)\right]^2}{\sigma_i^2},
 \]
 which is called chi squared and is a measure of the “goodness of fit”
 - We assume that there is a “parent distribution” with the parent coefficients \(A_0\) and \(B_0\), where the “true” relationship between \(y\) and \(x\) is \(y_0(x) = A_0 + B_0x\) and further that each individual measurement of \(y_i\) is drawn from a Gaussian distribution with a mean \(y_0(x_i)\) and STD \(\sigma_i\)
 - Thus the probability of making the observed measurement of \(y_i\) (with \(\sigma_i\)) about the “true” mean value \(y_0(x_i)\) is given by
 \[
 P_i = \frac{1}{\sigma_i\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left[\frac{y_i - y_0(x_i)}{\sigma_i}\right]^2\right\}
 \]
• The probability of making a set of N measurements of \(y_i \)

\[
P(A_o, B_o) = \pi P_i = \prod \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) \exp \left\{ -\frac{1}{2} \sum \left[\frac{y_i - y_o(x_i)}{\sigma_i} \right]^2 \right\}
\]

where the \(\sigma_i^2 \) are weighting factors

• Likewise for any estimated values of A and B the probability of obtaining the N values of \(Y_i \) is

\[
P(A, B) = \prod \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) \exp \left\{ -\frac{1}{2} \sum \left[\frac{y_i - y(x_i)}{\sigma_i} \right]^2 \right\}
\]

• Fundamental assumption: the observed set of \((x_i, y_i) \) is more likely to come from the parent distribution \(y_0(x) = A_0 + B_0x \) than any other with different coefficient and \(P(A_0, B_0) \) is the maximum probability one can have; consequently the most likely estimates of A and B are those that maximize \(P(A, B) \)
Physics 433 – Lecture 7

• Maximizing P(A,B) reduces to minimizing Chi squared

\[\chi^2 = \sum_{i=1}^{N} \left[\frac{1}{\sigma_i^2} (y_i - A - Bx_i) \right]^2 \]

• We now find values of A and B that minimize the weighted sum of the squares of the deviations of \(\chi^2 \) by taking the derivatives of \(\chi^2 \) with respect to A and B and setting them equal to zero

\[\frac{\partial}{\partial A} \chi^2 = \frac{\partial}{\partial A} \sum \left[\frac{1}{\sigma_i^2} (y_i - A - Bx_i)^2 \right] = -2 \sum \left[\frac{1}{\sigma_i^2} (y_i - A - Bx_i) \right] = 0 \]

\[\frac{\partial}{\partial B} \chi^2 = \frac{\partial}{\partial B} \sum \left[\frac{1}{\sigma_i^2} (y_i - A - Bx_i)^2 \right] = -2 \sum \left[\frac{x_i}{\sigma_i^2} (y_i - A - Bx_i) \right] = 0 \]
• The solutions, written in determinant form are

\[
A = \frac{1}{\Delta} \left| \begin{array}{cc}
\frac{\sum y_i}{\sigma_i^2} & \frac{\sum x_i}{\sigma_i^2} \\
\frac{\sum x_i y_i}{\sigma_i^2} & \frac{\sum x_i^2}{\sigma_i^2}
\end{array} \right| = \frac{1}{\Delta} \left(\sum \frac{x_i^2}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} - \sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} \right)
\]

\[
B = \frac{1}{\Delta} \left| \begin{array}{cc}
1 & \frac{\sum y_i}{\sigma_i^2} \\
\frac{\sum x_i y_i}{\sigma_i^2} & \frac{\sum x_i y_i}{\sigma_i^2}
\end{array} \right| = \frac{1}{\Delta} \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} - \sum \frac{x_i}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} \right)
\]

\[
\Delta = \left| \begin{array}{cc}
\frac{1}{\sigma_i^2} & \frac{\sum x_i}{\sigma_i^2} \\
\frac{\sum x_i}{\sigma_i^2} & \frac{\sum x_i^2}{\sigma_i^2}
\end{array} \right| = \sum \frac{1}{\sigma_i^2} \sum \frac{x_i^2}{\sigma_i^2} - \left(\sum \frac{x_i}{\sigma_i^2} \right)^2
\]
Least squares fit to a straight line \(y = A + Bx \) we have seen results from minimizing chi squared,

\[
\chi^2 = \sum_1^N \left(\frac{1}{\sigma_i} (y_i - A - Bx_i) \right)^2
\]

which yeilds A and B in terms of the variables \((x_i, y_i) \).

The uncertainties in the parameters A and B follows from the standard variance calculations

\[
\frac{\partial A}{\partial y_j} = \frac{1}{\Delta} \left(\frac{1}{\sigma_j} \sum x^2 - \frac{x^2}{\sigma^2} \sum x^2 \right) \quad \frac{\partial B}{\partial y_j} = \frac{1}{\Delta} \left(\frac{x_j}{\sigma^2} \sum \frac{1}{\sigma^2} - \frac{1}{\sigma^2} \sum x_i \right)
\]

Yeilding

\[
\sigma^2_A \approx \sum_{j=1}^N \sigma_j^2 \left[\frac{1}{\sigma_j^4} \left(\sum \frac{x^2}{\sigma^2} \right) - \frac{2x_j}{\sigma_j^4} \sum \frac{x^2}{\sigma^2} \sum \frac{x_i}{\sigma_i^2} + \frac{x^2}{\sigma_j^2} \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \right] = \frac{1}{\Delta} \sum \frac{x^2}{\sigma_i^2}
\]

\[
\sigma^2_B \approx \sum_{j=1}^N \sigma_j^2 \left[\frac{x^2_j}{\sigma_j^4} \left(\sum \frac{1}{\sigma_i^2} \right)^2 - \frac{2x_j}{\sigma_j^4} \sum \frac{1}{\sigma_i^2} \sum \frac{1}{\sigma_i^2} - \frac{1}{\sigma_j^2} \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \right] = \frac{1}{\Delta} \sum \frac{1}{\sigma_i^2}
\]
Phys 433 - Lecture 7

- Propagation of errors in case of dependent variables that are functions of one or more measured variable or combining standard deviations of uncertainties to estimate a resultant uncertainty
- Consider the function $x = f(u, v, ...) \text{ and its most probable value } \bar{x} = f(\bar{u}, \bar{v}, ...)$
 - Individual measurements yield $x_i = f(u_i, v_i, ...)$
 - In limit of infinite measurements the variance is given by
 $$\sigma_x^2 = \lim_{N \to \infty} \frac{1}{N} \sum (x_i - \bar{x}_i)^2$$
 - The deviations of x_i - x are given by
 $$x_i - \bar{x} \cong (u_i - \bar{u}) \left(\frac{\partial x}{\partial u} \right) + (v_i - \bar{v}) \left(\frac{\partial x}{\partial v} \right) + ...$$
- Consequently
 $$\sigma_x^2 \cong \lim_{N \to \infty} \frac{1}{N} \sum \left[(u_i - \bar{u}) \left(\frac{\partial x}{\partial u} \right) + (v_i - \bar{v}) \left(\frac{\partial x}{\partial v} \right) + ... \right]^2$$
 $$\cong \lim_{N \to \infty} \frac{1}{N} \sum \left[(u_i - \bar{u})^2 \left(\frac{\partial x}{\partial u} \right)^2 + (v_i - \bar{v})^2 \left(\frac{\partial x}{\partial v} \right)^2 + 2(u_i - \bar{u})(v_i - \bar{v}) \left(\frac{\partial x}{\partial u} \right) \left(\frac{\partial x}{\partial v} \right) + ... \right]$$

May 11, 2006 Henry Lubatti
The first two terms are simply the variances given by

\[\sigma_u^2 = \lim_{N \to \infty} \left(\frac{1}{N} \sum (u_i - \bar{u}_i)^2 \right) \quad \sigma_v^2 = \lim_{N \to \infty} \left(\frac{1}{N} \sum (v_i - \bar{v}_i)^2 \right) \]

The third term is the covariance \(\sigma_{uv} \equiv \lim_{N \to \infty} \left(\frac{1}{N} \sum [(u_i - \bar{u})(v_i - \bar{v})] \right) \)

Using these definitions we have the error propagation eq.

\[\sigma_x^2 \cong \sigma_u^2 \left(\frac{\partial x}{\partial u} \right)^2 + \sigma_v^2 \left(\frac{\partial x}{\partial v} \right)^2 + ... + 2\sigma_{uv} \left(\frac{\partial x}{\partial u} \right) \left(\frac{\partial x}{\partial v} \right) + ... \]

The first two terms are the averages of the squares of the deviations in \(x \) produced by uncertainties in \(u \) and \(v \)

The cross term, covariance, vanishes if the variables are uncorrelated.

May 11, 2006

Henry Lubatti
• For the special case where all sigma are equal $\sigma = \sigma_i$ we have

\[
A = \frac{1}{\Delta'} \left| \begin{array}{cc} \Sigma y_i & \Sigma x_i \\ \Sigma x_i y_i & \Sigma x_i^2 \end{array} \right| = \frac{1}{\Delta'} \left(\Sigma x_i^2 \Sigma y_i - \Sigma x_i \Sigma x_i y_i \right)
\]

\[
B = \frac{1}{\Delta'} \left| \begin{array}{cc} N & \Sigma y_i \\ \Sigma x_i & \Sigma x_i y_i \end{array} \right| = \frac{1}{\Delta'} \left(N \Sigma x_i y_i - \Sigma x_i \Sigma y_i \right)
\]

\[
\Delta' = \left| \begin{array}{cc} N & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{array} \right| = N \Sigma x_i^2 - (\Sigma x_i)^2
\]

• Chi squared, χ^2, can be used to test the "goodness of fit"
Chi squared test for goodness of fit

- In the least squares fitting procedure we minimize the weighted sum of the squares of deviations of the data points, \(y_i \), from the fitting function, \(y(x_i) \)
- The variance of the fit \(s^2 \) is an estimate of the data, \(\sigma^2 \)

The variance of the fit is given by

\[
s^2 = \frac{1}{d} \sum w_i [y_i - y(x_i)]^2
\]

where \(d = N - m \) is the number of degrees of freedom, \(N \) the total number of data points, \(m \) the number of parameters in the fit and \(w_i = \frac{1/\sigma_i^2}{\left(\frac{1}{N}\right) \sum \left(\frac{1}{\sigma_i^2}\right)} \) the weights for the \(i^{th} \) data point.

- The variance is related to Chi Squared
- In our fits \(y(x_i) = A + Bx_i \)
- From the above definitions we find the reduced

\[
\chi^2_d = \frac{\chi^2}{d} = \frac{s^2}{\langle \sigma_i^2 \rangle}
\]
The next step is to determine some estimate of the “goodness” of your fit

There are two tests often used: the linear correlation coefficient, r, and the Chi squared probability

- Linear Correlation Coefficient r, is a measure of how well the set of data points (x_i, y_i) correlate
- For example, if you measure the force required to stretch a spring a distance x and want to determine if force has the following dependence on distance, $F = A + Bx$ (in this case B represents the spring constant k).
- In this example you would find a linear correlation between the variables; however if you made a study of the force required to stretch a spring a given distance as a function of time, aside from the statistical fluctuations in your measurements there would be no reproducible correlations between the variables
Physics 433 – Lecture 7

- If the variables \((x_i, y_i)\) with \(y\) the dependent variable are described by \(y = A + Bx\) we examine what we obtain when we treat \(x\) as the dependent variable, that is \(x = a + by\)

 - \(A\) and \(B\) are given by

 \[
 A = \frac{1}{\Delta'} \begin{vmatrix} \Sigma y_i & \Sigma x_i \\ \Sigma x_i, y_i & \Sigma x_i^2 \end{vmatrix} - \frac{1}{\Delta} (\Sigma x_i^2 \Sigma y_i - \Sigma x_i \Sigma x_i y_i)
 \]

 \[
 B = \frac{1}{\Delta'} \begin{vmatrix} N & \Sigma y_i \\ \Sigma x_i & \Sigma x_i \Sigma y_i \end{vmatrix} = \frac{1}{\Delta} (N \Sigma x_i y_i - \Sigma x_i \Sigma y_i)
 \]

 \[
 \Delta' = \begin{vmatrix} N & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{vmatrix} = N \Sigma x_i^2 - (\Sigma x_i)^2
 \]

 - The coefficients \(a(x_i, y_i)\) and \(b(x_i, y_i)\) are obtained by interchanging \(x\) and \(y\) in the equations above

 - If there is complete correlation between \(x\) and \(y\) we can determine a relationship between the coefficients that we can obtain by writing \(y = -a/b + x/b = A + Bx\); equating the coefficients gives

 \[A = -a/b\] and \(B = 1/b\) so for complete correlation, \(bB = 1\) and no correlation is when \(bB = 0\)

- We define the linear correlation coefficient \(r = \sqrt{bB}\)

 - Substituting \(b(x_i, y_i)\) and \(B(x_i, y_i)\)

 where \((0 < r < 1)\)